sábado, 10 de dezembro de 2011

DEFEITOS EM TVs PHILCO

TV20V56
Tenho dois defeitos pra relatar aqui:
1. D918 esquenta e entra em curto;
2. Faixa preta do lado direito da tela ( lado esquerdo para quem tá de frente).
Esta TV entrou na minha Eletrônica com problema na fonte. Troquei Q901 e IC, liguei o aparelho e oscilou normal; em a proximada mente 1 minuto o diodo D918 - IN4004 entrou em curto e pipocou. Troquei ele e liguei o aparelho por uma tomada anticurto; observei que o diodo esquentava imediatamente. Daí comecei a procurar o componente defeituoso; fiz uma varredura completa nessa fonte e não encontrava nada. Pra facilitar esta com outra praticamente igual na bancada, foi só comparar o valor de alguns componentes pra descobrir o defeito. C943 de 10uF/100V; esta TV tinha vindo de outra Eletrônica e o imbecíl tinha colocado um capacitor de 22uF/50V, assim não dá né? Foi só colocar o valor correto e pronto, fonte com funcionamento 100%. 
   -Ao ligar a TV ela veio com uma faixa preta do lado direito da tela (lado esquerdo pra quem tá de frente). Aí foi dor de cabeça; vasculhei todo sertor do horizontal, entrei no modo de serviço fiz os ajustes, troquei memória por outra da mesma gravada e nada. A estas alturas já era mais de meia noite; fui dormir e no outro dia bem cedo fui pracima dela novamente. Peguei uma lupa de relojoeiro, coloquei no olho e fui dar uma olhada entre os pinos do IC101. Imediatamente vi um minúsculo fraguimento de solda entre os pinos 15 e 16, aí foi só remover esse malvado e pronto. liguei a TV e a imagem perfeita.
Então, companheiros, defeito parecido verifique imediatamente o pino 16 do IC101, o capacitor smd C703, que está ligado a ele, alterado também apresenta este sintoma.

Se este poste lhe serviu em alguma coisa, ou, se achou alguma coisa de interessante, deixe um comentário.
Até a próxima.
Matias Olímpio-PI, 10/12/2011


    

segunda-feira, 31 de outubro de 2011

Após briga, Zezé di Camargo confirma show com Luciano no Rio

Nesta segunda-feira (31), o sertanejo Zezé Di Camargo confirmou em conversa com o jornal Extra, que vai cantar ao lado do irmão Luciano na próxima sexta-feira (04), no Rio de Janeiro. “Eu e ele estaremos aí, firmes e fortes, para fazer os shows”.

A família  da dupla também vai acompanhar de perto a apresentação deles. Zilu, mulher de Zezé, vai voltar de Miami só para assistir ao show.

TDF8591TH - 2 x100 W SE (4 W) or 1 x 310 W BTL (4 W) class-D amplifier

http://www.nxp.com/documents/data_sheet/TDF8591TH.pdf

TDF8591TH - 2 x100 W SE (4 W) or 1 x 310 W BTL (4 W) class-D amplifier

1. General description
The TDF8591TH is a high-efficiency class-D audio power amplifier with low power
dissipation for application in car audio systems. The typical output power is 2 ´ 100 W
into 4 W.
The TDF8591TH is available in an HSOP24 power package with a small internal heat
sink. Depending on the supply voltage and load conditions, a small or even no external
heat sink is required. The amplifier operates over a wide supply voltage range from ±14 V
to ±29 V and consumes a low quiescent current.
2. Features
n Zero dead time switching
n Advanced output current protection
n No DC offset induced pop noise at mode transitions
n High efficiency
n Supply voltage from ±14 V to ±29 V
n Low quiescent current
n Usable as a stereo Single-Ended (SE) amplifier or as a mono amplifier in Bridge-Tied
Load (BTL)
n Fixed gain of 26 dB in SE and 32 dB in BTL
n High BTL output power: 310 W into 4 W
n Suitable for speakers in the 2 W to 8 W range
n High supply voltage ripple rejection
n Internal oscillator or synchronized to an external clock
n Full short-circuit proof outputs across load and to supply lines
n Thermal foldback and thermal protection
n AEC-Q100 qualified
3. Ordering information
TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
Rev. 01 — 5 March 2008 Product data sheet
Table 1. Ordering information
Type number Package
Name Description Version
TDF8591TH HSOP24 plastic, heatsink small outline package; 24 leads; low stand-off height SOT566-3
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 2 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
4. Block diagram
5. Pinning information
5.1 Pinning
Fig 1. Block diagram
001aah194
VDDP2
VSSP1
DRIVER
HIGH
OUT2
BOOT2
TDF8591TH
DRIVER
LOW
RELEASE1
SWITCH1
ENABLE1
CONTROL
AND
HANDSHAKE
PWM
MODULATOR
OSCILLATOR MANAGER
TEMPERATURE SENSOR
CURRENT PROTECTION
VOLTAGE PROTECTION
STABI
MODE
INPUT
STAGE
mute
9
8
IN1M
IN1P
22
21
17 20
VSSP1 VSSP2
DRIVER
HIGH
DRIVER
RELEASE2 LOW
SWITCH2
ENABLE2
CONTROL
AND
PWM HANDSHAKE
MODULATOR
11
SGND1
7
OSC
2
SGND2
6
MODE
INPUT
STAGE
mute
5
4
IN2M
IN2P
OUT1
BOOT1
15
16
24 19
VSSD n.c.
1
VSSA2
12
VSSA1
3
VDDA2
10
VDDA1
18 13 23 14
STABI DIAG VDDP2 VDDP1
Fig 2. Pin configuration (top view)
TDF8591TH
VSSD VSSA2
VDDP2 SGND2
BOOT2 VDDA2
OUT2 IN2M
VSSP2 IN2P
n.c. MODE
STABI OSC
VSSP1 IN1P
OUT1 IN1M
BOOT1 VDDA1
VDDP1 SGND1
DIAG VSSA1
001aah195
24
23
22
21
20
19
18
17
16
15
14
13
11
12
9
10
7
8
5
6
3
4
1
2
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 3 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
5.2 Pin description
[1] The heatsink is internally connected to VSSD.
6. Functional description
6.1 Introduction
The TDF8591TH is a dual channel audio power amplifier using class-D technology. The
audio input signal is converted into a Pulse Width Modulated (PWM) signal via an analog
input stage and PWM modulator. To enable the output power transistors to be driven, this
digital PWM signal is applied to a control and handshake block and driver circuits for both
the high-side and low-side. An external 2nd-order low-pass filter converts the PWM output
signal to an analog audio signal across the loudspeakers.
Table 2. Pin description
Symbol Pin Description
VSSA2 1 negative analog supply voltage for channel 2
SGND2 2 signal ground for channel 2
VDDA2 3 positive analog supply voltage for channel 2
IN2M 4 negative audio input for channel 2
IN2P 5 positive audio input for channel 2
MODE 6 mode selection input: standby, mute or operating
OSC 7 oscillator frequency adjustment or tracking input
IN1P 8 positive audio input for channel 1
IN1M 9 negative audio input for channel 1
VDDA1 10 positive analog supply voltage for channel 1
SGND1 11 signal ground for channel 1
VSSA1 12 negative analog supply voltage for channel 1
DIAG 13 diagnostic for activated current protection
VDDP1 14 positive power supply voltage for channel 1
BOOT1 15 bootstrap capacitor for channel 1
OUT1 16 PWM output from channel 1
VSSP1 17 negative power supply voltage for channel 1
STABI 18 decoupling of internal stabilizer for logic supply
n.c. 19 not connected
VSSP2 20 negative power supply voltage for channel 2
OUT2 21 PWM output from channel 2
BOOT2 22 bootstrap capacitor for channel 2
VDDP2 23 positive power supply voltage for channel 2
VSSD 24 negative digital supply voltage[1]
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 4 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
The TDF8591TH contains two independent amplifier channels with a differential input
stage, high output power, high efficiency (90 %), low distortion and a low quiescent
current. The amplifier channels can be connected in the following configurations:
• Mono Bridge-Tied Load (BTL) amplifier
• Dual Single-Ended (SE) amplifiers
The TDF8591TH also contains circuits common to both channels such as the oscillator, all
reference sources, the mode functionality and a digital timing manager. For protection a
thermal foldback, temperature, current and voltage protection are built in.
6.2 Mode selection
The TDF8591TH can be switched in three operating modes via pin MODE:
• Standby mode; the amplifiers are switched off to achieve a very low supply current
• Mute mode; the amplifiers are switching idle (50 % duty cycle), but the audio signal at
the output is suppressed by disabling the VI-converter input stages
• Operating mode; the amplifiers are fully operational with output signal
The input stage (see Figure 1) contributes to the DC offset measured at the amplifier
output. To avoid pop noise the DC output offset voltage should be increased gradually at a
mode transition from mute to operating, or vice versa, by limiting the dVMODE/dt on pin
MODE, resulting in a small dVO(offset)/dt for the DC output offset voltage. The required time
constant for a gradually increase of the DC output offset voltage between mute and
operating is generated via an RC network on pin MODE. An example of a switching circuit
for driving pin MODE is illustrated in Figure 3 and explained in Table 3.
Fig 3. Example of mode selection circuit
Table 3. Mode selection
S1 S2 Mode selection
closed closed Standby mode
closed open Standby mode
open closed Mute mode
open open Operating mode
001aad836
5.6 kW
5.6 kW
5.6 V
5.6 kW
S1 S2
MODE
SGND
100 mF
(10 V)
VDDP
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 5 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
The value of the RC time constant should be dimensioned for 500 ms. If the 100 mF
capacitor is left out of the application the voltage on pin MODE will be applied with a much
smaller time constant, which might result in audible pop noises during start-up (depending
on DC output offset voltage and used loudspeaker).
In order to fully charge the coupling capacitors at the inputs, the amplifier will remain
automatically in Mute mode for approximately 150 ms before switching to Operating
mode. A complete overview of the start-up timing is given in Figure 4.
6.3 Pulse width modulation frequency
The output signal of the amplifier is a PWM signal with a switching frequency that is set by
an external resistor Rext(OSC) connected between pins OSC and VSSA. An optimum setting
for the carrier frequency is between 300 kHz and 350 kHz. An external resistor Rext(OSC) of
30 kW sets the frequency to 310 kHz.
Fig 4. Timing on mode selection input
audio
operating
mute
standby
5 V
2.5 V
0 V (SGND)
time
VMODE
100 ms >50 ms
switching
audio
operating
standby
5 V
0 V (SGND)
time
001aad837
VMODE
100 ms 50 ms
switching
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 6 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
If two or more class-D amplifiers are used in the same audio application, it is
recommended to synchronize the switching frequency of all devices to an external clock
(see Section 12.3).
6.4 Protections
The following protections are included in TDF8591TH:
• Thermal Foldback (TF)
• OverTemperature Protection (OTP)
• OverCurrent Protection (OCP)
• Window Protection (WP)
• Supply voltage protections
– UnderVoltage Protection (UVP)
– OverVoltage Protection (OVP)
– Unbalance Protection (UBP)
The reaction of the device on the different fault conditions differs per protection and is
described in Section 6.4.1 to Section 6.4.5.
6.4.1 Thermal foldback
If the junction temperature Tj > 145 °C, then the TF gradually reduced the gain, resulting in
a smaller output signal and less dissipation. At Tj = 155 °C the outputs are fully muted.
6.4.2 Overtemperature protection
If Tj > 160 °C, then the OTP will shut down the power stage immediately.
6.4.3 Overcurrent protection
The OCP will detect a short-circuit between the loudspeaker terminals or if one of the
loudspeaker terminals is short-circuited to one of the supply lines.
If the output current tends to exceed the maximum output current of 12 A, the output
voltage of the TDF8591TH will be regulated to a level where the maximum output current
is limited to 12 A while the amplifier outputs remain switching, the amplifier does not shut
down. When this active current limiting continues longer than a time t (see Figure 5) the
capacitor on pin DIAG is discharged below a threshold value and the TDF8591TH shuts
down. Activation of current limiting and the triggering of the OCP is observed at pin DIAG
(see Figure 5).
A maximum value for the capacitor on pin DIAG is 47 pF. The reference voltage on pin
DIAG is VSSA. Pin DIAG should not be connected to an external pull-up.
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 7 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
When the loudspeaker terminals are short-circuited and the OCP is triggered the
TDF8591TH is switched off completely and will try to restart every 100 ms (see Figure 6):
• 50 ms after switch off pin DIAG will be released
• 100 ms after switch off the amplifier will return to mute
• 150 ms after switch off the amplifier will return to operation. If the short-circuit
condition is still present after this time this cycle will be repeated. The average
dissipation will be low because of the small duty cycle
A short-circuit of the loudspeaker terminals to one of the supply lines will also trigger the
activation of the OCP and the amplifier will shut down. During restart the window
protection will be activated. As a result the amplifier will not start up after 100 ms and pin
DIAG will remain LOW until the short-circuit to the supply lines is removed.
Fig 5. Pin DIAG with activated current limiting
Fig 6. Restart of the TDF8591TH
001aad838
» VSSA + 8 V Ch1 mean
5.03 V
M 20.0 ms A Ch1 ~ 1.28 V
» VSSA + 2 V
VSSA
t
001aah365
input voltage
current in the
short-circuit
(between the
speaker terminals)
PWM output
pin DIAG
50 ms
50.0 V~
5.00 VW
Ch2
Ch4
500 mV Ch3 1.80 V
10.0 V
Ch1 M 25.0 ms
Ch3
2
3
1
4
50 ms 50 ms
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 8 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
6.4.4 Window protection
The WP checks the conditions at the output pins of the power stage and is activated:
• During the start-up sequence, when pin MODE is switched from standby to mute. In
the event of a short-circuit at one of the output pins to VDD or VSS the start-up
procedure is interrupted and the TDF8591TH waits until the short-circuit to the supply
lines has been removed. Because the test is done before enabling the power stages,
no large currents will flow in the event of a short-circuit.
• When the amplifier is completely shut down due to activation of the OCP by a
short-circuit to one of the supply lines, the window protection will then be activated
during restart (after 100 ms). As a result the amplifier will not start up until the
short-circuit to the supply lines is removed.
6.4.5 Supply voltage protections
If the supply voltage drops below ±12.5 V, the UVP circuit is activated and the
TDF8591TH switch-off will be silent and without pop noise. When the supply voltage rises
above ±12.5 V, the TDF8591TH is restarted again after 100 ms.
If the supply voltage exceeds ±33 V the OVP circuit is activated and the power stages will
shut down. It is re-enabled as soon as the supply voltage drops below ±33 V. So in this
case no timer of 100 ms is started. The maximum operating supply voltage is ±29 V and if
the supply voltage is above the maximal allowable voltage of ±34 V (see Section 7), the
TDF8591TH can be damaged, irrespective of an activated OVP. See Section 12.6
“Pumping effects” for more information about the use of the OVP.
An additional UBP circuit compares the positive analog (VDDA) and the negative analog
(VSSA) supply voltages and is triggered if the voltage difference between them exceeds
the unbalance threshold level, which is expressed as follows:
V
When the supply voltage difference VDDA - VSSA exceeds Vth(unb), the TDF8591TH
switches off and is restarted again after 100 ms.
Example: With a symmetrical supply of VDDA = 20 V and VSSA = -20 V, the unbalance
protection circuit will be triggered if the unbalance exceeds approximately 6 V.
In Table 4 an overview is given of all protections and the effect on the output signal.
[1] Amplifier gain will depend on junction temperature and heat sink size.
[2] Thermal foldback will influence restart timing depending on heat sink size.
Table 4. Overview protections TDF8591TH
Protection name Complete shut down Restart directly Restart every 100 ms DIAG
TF N Y[1] N N
OTP Y Y[2] N[2] N
OCP N[3] Y[3] N[3] Y
WP Y[4] Y N Y
UVP Y N Y N
OVP Y Y N N
UBP Y N Y N
Vth(unb) » 0.15 ´ (VDDA – VSSA)
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 9 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
[3] Only complete shut down of amplifier in case of a short-circuit. In all other cases current limiting resulting in
clipping output signal.
[4] Fault condition detected during (every) transition between standby-to-mute and during restart after
activation of OCP (short-circuit to one of the supply lines).
6.5 Diagnostic output
Pin DIAG is pulled LOWwhen the OCP is triggered. With a continuous short-circuited load
a switching pattern in the voltage on pin DIAG is observed (see Figure 6). A permanent
LOW on pin DIAG indicates a short-circuit to the supply lines whereas a short-circuited
load causes a switching DIAG pin (see Section 6.4.3).
The pin DIAG reference voltage is VSSA. Pin DIAG should not be connected to an external
pull-up. An example of a circuit to read out and level shift the diagnostic data is given in
Figure 7. V5V represents a logic supply that is used in the application by the
microprocessor that reads out the DIAG data.
6.6 Differential inputs
For a high Common Mode Rejection Ratio (CMRR) and a maximum of flexibility in the
application, the audio inputs are fully differential. By connecting the inputs anti-parallel the
phase of one of the channels can be inverted, so that a load can be connected between
the two output filters. In this case the system operates as a mono BTL amplifier.
The input configuration for a mono BTL application is illustrated in Figure 8.
In the stereo SE configuration it is also recommended to connect the two differential
inputs in anti-phase. This has advantages for the current handling of the supply voltage at
low signal frequencies (supply pumping).
Fig 7. DIAG readout circuit with level shift
001aad840
100 kW
100 kW
27 kW
5.6 V 10 kW
VDDA
VSSA
DIAG
DIAG
out
SGND
M2
V5V
M1
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 10 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
7. Limiting values
Input resistors are referred to SGND.
a. Internal circuitry
b. External connections
Fig 8. Input configuration for mono BTL application
001aad841
IN1P
SGND
IN1M
IN2P
IN2M
Vin
IN1P
OUT1
power stage
mbl466
OUT2
SGND
IN1M
IN2P
IN2M
Table 5. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max Unit
VDD supply voltage VDDP1 and VDDA1 referred to
SGND1; VDDP2 and VDDA2 referred
to SGND2
-0.3 +34 V
VSS negative supply voltage VSSP1 and VSSA1 referred to
SGND1; VSSP2 and VSSA2 referred
to SGND2
-34 +0.3 V
VP supply voltage -0.3 +66 V
IOSM non-repetitive peak output current - 12 A
Tstg storage temperature -55 +150 °C
Tamb ambient temperature -40 +85 °C
Tj junction temperature -40 +150 °C
VBOOT1 voltage on pin BOOT1 referred to OUT1 [1]0 14 V
VBOOT2 voltage on pin BOOT2 referred to OUT2 [1]0 14 V
VSTABI voltage on pin STABI referred to VSSD
[2]- 14 V
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 11 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
[1] Pin BOOT should not be loaded by any other means than the boot capacitor. A short-circuit between pin BOOT and VSS will damage the
device.
[2] Pin STABI should not be loaded by an external circuit. A short-circuit between pin STABI and a voltage source or VSS will damage the
device.
[3] Pin DIAG should not be connected to a voltage source or to a pull-up resistor. An example of a circuit that can be used to read out
diagnostic data is given in Figure 7.
8. Thermal characteristics
9. Static characteristics
VMODE voltage on pin MODE referred to SGND2 0 8 V
VOSC voltage on pin OSC referred to VSSD 0 40 V
VIN1M voltage on pin IN1M referred to SGND1 -5 +5 V
VIN1P voltage on pin IN1P referred to SGND1 -5 +5 V
VIN2M voltage on pin IN2M referred to SGND2 -5 +5 V
VIN2P voltage on pin IN2P referred to SGND2 -5 +5 V
VDIAG voltage on pin DIAG referred to VSSD
[3]0 9 V
VO output voltage VSSP - 0.3 VDDP + 0.3 V
Table 5. Limiting values …continued
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max Unit
Table 6. Thermal characteristics
Symbol Parameter Conditions Typ Unit
Rth(j-c) thermal resistance from junction to case 1 K/W
Rth(j-a) thermal resistance from junction to ambient In free air 35 K/W
Table 7. Static characteristics
VP = ±27 V; fosc = 310 kHz; Tamb = -40 °C to +85 °C; Tj = -40 °C to +150 °C; unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
Supply
VP supply voltage [1] ±14 ±27 ±29 V
Iq(tot) total quiescent current no load, no filter, no snubber
network connected
- 50 65 mA
Istb standby current Tj = -40 °C to +85 °C - 150 500 mA
Mode select input; pin MODE (reference to SGND2)
IMODE current on pin MODE VMODE = 5.5 V - 100 300 mA
VMODE voltage on pin MODE Standby mode [2][3] 0 - 0.8 V
Mute mode [2][3] 2.2 - 2.8 V
Operating mode [2][3] 4.2 - 6 V
Diagnostic output; pin DIAG (reference to VSSD)
VOL LOW-level output voltage activated OCP or WP [4] - - 0.8 V
VOH HIGH-level output voltage no activated OCP or WP [4] - 8.4 9 V
Audio inputs; pins IN1M, IN1P (reference to SGND1), IN2P and IN2M (reference to SGND2)
VI input voltage [2] - 0 - V
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 12 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
[1] The circuit is DC adjusted at VP = ±12.5 V to ±30 V.
[2] Refers to usage in a symmetrical supply application (see Section 12.7). In an asymmetrical supply application the SGND voltage should
be defined by an external circuit.
[3] The transition between Standby and Mute mode contains hysteresis, while the slope of the transition between Mute and Operating
mode is determined by the time constant on pin MODE (see Figure 9).
[4] Pin DIAG should not be connected to an external pull-up.
[5] DC output offset voltage is applied to the output during the transition between Mute and Operating mode in a gradual way. The
dVO(offset)/dt caused by any DC output offset is determined by the time constant on pin MODE.
[6] At a junction temperature of approximately Tact(th_fold) - 5 °C the gain reduction will commence and at a junction temperature of
approximately Tact(th_fold) + 5 °C the amplifier mutes.
Amplifier outputs; pins OUT1 and OUT2
VO(offset) output offset voltage SE; mute - - 20 mV
SE; operating [5] - - 170 mV
BTL; mute - - 30 mV
BTL; operating [5] - - 240 mV
Stabilizer output; pin STABI (reference to VSSP1)
VO output voltage mute and operating; with respect
to VSSD
11 12.5 14 V
Temperature protection
Tprot protection temperature - 160 180 °C
Tact(th_fold) thermal foldback activation
temperature
closed loop SE voltage gain
reduced with 6 dB
[6] 145 150 - °C
Table 7. Static characteristics …continued
VP = ±27 V; fosc = 310 kHz; Tamb = -40 °C to +85 °C; Tj = -40 °C to +150 °C; unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
Fig 9. Behavior of pin MODE
STBY MUTE ON
5.5
001aad842
VMODE (V)
0 0.8 2.2 2.8 4.2
VO(offset)
mute
operating
slope is directly related to the
time constant on pin MODE
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 13 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
10. Dynamic characteristics
10.1 Dynamic characteristics (SE)
[1] Rs(L) is the series resistance of inductor of low-pass LC filter in the application.
[2] Output power is measured indirectly; based on RDSon measurement (see Section 12.2).
[3] THD is measured in a bandwidth of 22 Hz to 20 kHz, AES brick wall. Maximum limit is guaranteed but may not be 100 % tested.
[4] Vripple = Vripple(max) = 2 V (peak-to-peak value); source resistance RS = 0 W.
[5] B = 22 Hz to 20 kHz, AES brick wall (see Section 12.4).
[6] B = 22 Hz to 20 kHz, AES brick wall, independent of RS (see Section 12.4).
[7] Vi(CM) is the input common mode voltage.
Table 8. Dynamic characteristics (SE)
VP = ±27 V; RL = 4 W; fi = 1 kHz; fosc = 310 kHz; Rs(L) < 0.1 W [1]; Tamb = -40 °C to +85 °C; Tj = -40 °C to +150 °C; unless
otherwise specified. See Section 12.7 for the SE application schematics. The 2nd-order demodulation filter coil is referred to
as L and the capacitor as C.
Symbol Parameter Conditions Min Typ Max Unit
Po output power L = 10 mH; C = 1 mF; Tj = 85 °C; RL = 2 W;
VP = ±28 V; THD = 0.5 %
[2] - 130 - W
L = 10 mH; C = 1 mF; Tj = 85 °C; RL = 2 W;
VP = ±28 V; THD = 10 %
[2] - 158 - W
L = 22 mH; C = 680 nF; Tj = 85 °C;
RL = 4 W; VP = ±29 V; THD = 0.5 %
[2] - 82 - W
L = 22 mH; C = 680 nF; Tj = 85 °C;
RL = 4 W; VP = ±29 V; THD = 10 %
[2] - 100 - W
IOM peak output current current limiting, see Section 6.4.3 12 - - A
THD total harmonic distortion Po = 1 W; fi = 1 kHz [3] - 0.02 0.2 %
Po = 1 W; fi = 10 kHz [3] - 0.10 - %
Gv(cl) closed-loop voltage gain 25 26 27 dB
SVRR supply voltage ripple
rejection
operating; fripple = 100 Hz [4] - 55 - dB
operating; fripple = 1 kHz [4] 40 50 - dB
mute; fripple = 1 kHz [4] - 55 - dB
standby; fripple = 100 Hz [4] - 80 - dB
|Zi(dif)| differential input
impedance
between the input pins INxP and INxM 45 68 - kW
Vn(o) noise output voltage operating; VP = ±27 V; RS = 0 W [5] - 170 - mV
operating; VP = ±18 V; RS = 0 W [5] - 145 - mV
mute; VP = ±27 V [6] - 125 - mV
mute; VP = ±18 V [6] - 85 - mV
acs channel separation Po = 1 W; RS = 0 W; fi = 1 kHz - 70 - dB
|DGv| voltage gain difference - - 1 dB
amute mute attenuation fi = 1 kHz; Vi = 1 V (RMS value) - 73 - dB
CMRR common mode rejection
ratio
fi(CM) = 1 kHz; Vi(CM) = 1 V (RMS value) [7] - 75 - dB
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 14 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
10.2 Dynamic characteristics (BTL)
[1] Rs(L) is the series resistance of inductor of low-pass LC filter in the application.
[2] Output power is measured indirectly; based on RDSon measurement (see Section 12.2).
[3] THD is measured in a bandwidth of 22 Hz to 20 kHz, AES brick wall. Maximum limit is guaranteed but may not be 100 % tested.
[4] Vripple = Vripple(max) = 2 V (peak-to-peak value); RS = 0 W.
[5] B = 22 Hz to 20 kHz, AES brick wall (see Section 12.4).
[6] B = 22 Hz to 20 kHz, AES brick wall, independent on RS (see Section 12.4).
Table 9. Dynamic characteristics (BTL)
VP = ±27 V; RL = 8 W; fi = 1 kHz; fosc = 310 kHz; Rs(L) < 0.1 W [1]; Tamb = -40 °C to +85 °C; Tj = -40 °C to +150 °C; unless
otherwise specified. See Section 12.7 for the BTL application schematics. The 2nd order demodulation filter coil is referred to
as L and the capacitor as C.
Symbol Parameter Conditions Min Typ Max Unit
Po output power L = 10 mH, C = 1 mF; Tj = 85 °C; RL = 4 W;
VP = ±18 V; THD = 0.5 %
[2] - 110 - W
L = 10 mH; C = 1 mF; Tj = 85 °C; RL = 4 W;
VP = ±18 V; THD = 10 %
[2] - 139 - W
L = 22 mH; C = 680 nF; Tj = 85 °C;
RL = 4 W; VP = ±27 V; THD = 0.5 %
[2] - 250 - W
L = 22 mH; C = 680 nF; Tj = 85 °C;
RL = 4 W; VP = ±27 V; THD = 10 %
[2] - 310 - W
IOM peak output current current limiting, see Section 6.4.3 12 - - A
THD total harmonic distortion Po = 1 W; fi = 1 kHz [3] - 0.02 0.2 %
Po = 1 W; fi = 10 kHz [3] - 0.15 - %
Gv(cl) closed-loop voltage gain 31 32 33 dB
SVRR supply voltage ripple
rejection
operating; fripple = 100 Hz [4] - 68 - dB
operating; fripple = 1 kHz [4] 50 68 - dB
mute; fripple = 1 kHz [4] - 68 - dB
standby; fripple = 100 Hz [4] - 80 - dB
|Zi(dif)| differential input
impedance
measured between the input pins INxP
and INxM
22 34 - kW
Vn(o) noise output voltage operating; VP = ±27 V; RS = 0 W [5] - 240 - mV
operating; VP = ±18 V; RS = 0 W [5] - 200 - mV
mute; VP = ±27 V [6] - 180 - mV
mute; VP = ±18 V [6] - 125 - mV
amute mute attenuation fi = 1 kHz; Vi = 1 V (RMS value) - 70 - dB
CMRR common mode rejection
ratio
fi(CM) = 1 kHz; Vi(CM) = 1 V (RMS value) - 75 - dB
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 15 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
11. Switching characteristics
12. Application information
12.1 BTL application
When using the power amplifier in a mono BTL application the inputs of both channels
must be connected in parallel and the phase of one of the inputs must be inverted (see
Figure 8). The loudspeaker is connected between the outputs of the two single-ended
demodulation filters.
12.2 Output power estimation
The achievable output powers in SE and BTL applications can be estimated using the
following expressions:
SE: W
BTL: W
Table 10. Switching characteristics
VDD = 27 V; Tamb = -40 °C to +85 °C; Tj = -40 °C to +150 °C; unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
Internal oscillator
fosc oscillator frequency typical; Rext(OSC) = 30.0 kW 290 310 344 kHz
maximum; Rext(OSC) = 15.4 kW - 560 - kHz
minimum; Rext(OSC) = 48.9 kW - 200 - kHz
External oscillator or frequency tracking
VH(OSC)min minimum HIGH-level voltage on pin OSC referred to SGND 4 - 6 V
VL(OSC)max maximum LOW-level voltage on pin OSC referred to SGND 0 - 1 V
Dftrack tracking frequency range 210 - 600 kHz
Drain source on-state resistance of the output transistors
RDSon(ls) low-side drain-source on-state resistance Tj = 85 °C; IDS = 6 A - 185 205 mW
Tj = 25 °C; IDS = 6 A - 140 155 mW
RDSon(hs) high-side drain-source on-state resistance Tj = 85 °C; IDS = 6 A - 220 245 mW
Tj = 25 °C; IDS = 6 A - 160 175 mW
Po(0.5%)
RL
RL + RDSon(hs) + Rs(L)
------------------------------------------------------ ´ VP 1 – tw(min)
f osc
2
è ´ ----------ø
´ æ ö è ø
æ ö2
2 ´ RL = ---------------------------------------------------------------------------------------------------------------------------------
Po(0.5%)
RL
RL + (RDSon(hs) + RDSon(ls)) + 2Rs(L)
------------------------------------------------------------------------------------------- ´ 2VP 1 – tw(min)
f osc
2
è ´ ----------ø
´ æ ö è ø
æ ö2
2 ´ RL = -------------------------------------------------------------------------------------------------------------------------------------------------------------------------
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 16 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
Peak output current, internally limited to 12 A:
SE: A
BTL: A
Variables:
RL = load resistance
Rs(L) = series resistance of the filter coil
RDSon(hs) = high side drain source on-state resistance (temperature dependent)
RDSon(ls) = low side drain source on-state resistance (temperature dependent)
fosc = oscillator frequency
tw(min) = minimum pulse width (typical 150 ns, temperature dependent)
VP = single sided supply voltage [or 0.5 (VDD + |VSS|)]
Po(0.5%) = output power at the onset of clipping
IOM should be below 12 A (see Section 6.4.3). IOM is the sum of the current through the
load and the ripple current. The value of the ripple current is dependent on the coil
inductance and voltage drop over the coil.
12.3 External clock
If two or more class-D amplifiers are used it is recommended that all devices run at the
same switching frequency. This can be realized by connecting all OSC pins together and
feed them from an external oscillator.
The internal oscillator requires an external Rext(OSC) and Cext(OSC) between pins OSC and
VSSA. For application of an external oscillator it is necessary to force OSC to a DC level
above SGND. The internal oscillator is disabled and the PWM modulator will switch with
the external frequency. The duty cycle of the external clock should be between 47.5 %
and 52.5 %.
The noise contribution of the internal oscillator is supply voltage dependent. In low noise
applications running at high supply voltage an external low noise oscillator is
recommended.
12.4 Noise
Noise should be measured using a high-order low-pass filter with a cut-off frequency of
20 kHz. The standard audio band pass filters used in audio analyzers do not suppress the
residue of the carrier frequency sufficiently to ensure a reliable measurement of the
audible noise. Noise measurements should preferably be carried out using AES 17 (Brick
Wall) filters or the Audio Precision AUX 0025 filter, which was designed especially for
measuring switching (class-D) amplifiers.
IOM
VP 1 – tw(min)
f osc
2
è ´ ----------ø
´ æ ö
RL + RDSon(hs) + Rs(L)
= ------------------------------------------------------------
IOM
2VP 1 tw(min)
f osc
2
è – ´ ---------ø
´ æ ö
RL + (RDSon(hs) + RDSon(ls)) + 2Rs(L)
= -------------------------------------------------------------------------------------------
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 17 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
12.5 Heat sink requirements
In some applications it may be necessary to connect an external heat sink to the
TDF8591TH. The thermal foldback activates on Tj = 140 °C. The expression below shows
the relationship between the maximum power dissipation before activation of the thermal
foldback and the total thermal resistance from junction to ambient:
W
The power dissipation (P) is determined by the efficiency (h) of the TDF8591TH. The
efficiency measured as a function of output power is given in Figure 30 and 31. The power
dissipation can be derived as function of output power (see Figure 32 and 33).
Example of a heatsink calculation for the 4 W BTL application with ±18 V supply:
• An audio signal with a crest factor of 10 (the ratio between peak power and average
power is 10 dB), this means that the average output power is 1¤10 of the peak power
• The peak RMS output power level is 110 W (0.5 % THD level)
• The average power is 0.1 ´ 110 W = 11 W
• The dissipated power at an output power of 11 W is approximately 5 W
• The total Rth(j-a) = (140 - 85) / 5 = 11 K/W, if the maximum expected Tamb = 85 °C
• The total thermal resistance Rth(j-a) = Rth(j-c) + Rth(c-h) + Rth(h-a)
• Rth(j-c) = 1 K/W, Rth(c-h) = 0.5 K/W to 1 K/W (dependent on mounting), so Rth(h-a) would
then be: 11 - (1 + 1) = 9 K/W
12.6 Pumping effects
When the TDF8591TH is used in a SE configuration, a so-called pumping effect can
occur. During one switching interval, energy is taken from one supply (e.g. VDDA1), while a
part of that energy is delivered back to the other supply line (e.g. VSSA1) and visa versa.
When the voltage supply source cannot sink energy, the voltage across the output
capacitors of that voltage supply source will increase: the supply voltage is pumped to
higher levels. The voltage increase caused by the pumping effect depends on:
• Speaker impedance
• Supply voltage
• Audio signal frequency
• Value of decoupling capacitors on supply lines
• Source and sink currents of other channels
Rth( j–a)
T j – Tamb
P
= ------------------------
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 18 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
The pumping effect should not cause a malfunction of either the audio amplifier and/or the
voltage supply source. For instance, this malfunction can be caused by triggering of the
UVP, OVP or UBP of the amplifier. Best remedy for pumping effects is to use the
TDF8591TH in a mono full-bridge application. In case of dual half-bridge application adapt
the supply voltage (e.g. increase supply decoupling capacitors).
12.7 Application schematics
For SE application (see Figure 10):
• A solid ground plane around the TDF8591TH is necessary to prevent emission
• 100 nF Surface Mounted Device (SMD) capacitors must be placed as close as
possible to the supply voltage pins of the TDF8591TH
• The heatsink of the HSOP24 package of the TDF8591TH is connected to pin VSSD
• The external heatsink must be connected to the ground plane
• Use a thermal conductive, electrically isolating Sil-Pad between the backside of the
TDF8591TH and the external heatsink
For BTL application (see Figure 11):
• A solid ground plane around the TDF8591TH is necessary to prevent emission
• 100 nF SMD capacitors must be placed as close as possible to the supply voltage
pins of the TDF8591TH
• The heatsink of the HSOP24 package of the TDF8591TH is connected to pin VSSD
• The external heatsink must be connected to the ground plane
• Use a thermal conductive, electrically isolating Sil-Pad between the backside of the
TDF8591TH and the external heatsink
• The differential inputs enable the best system level audio performance with
unbalanced signal sources. In case of hum due to floating inputs connect the
shielding or source ground to the amplifier ground
• Minimum total required capacity per supply voltage line is 3300 mF
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 19 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
Fig 10. SE application schematic
001aah232
IN1 C18 IN1P
IN2
IN1M
SGND1
FB GND
SGND2
8
9
11
2
5
4
3 1
C19
220 pF
C23
1 nF
C17
1 nF
C30
1 nF
C25
1 nF
R8
5.6 kW 470 nF
R3
5.6 kW
5.6 kW 470 nF
R10 C20
C26 IN2P
IN2M
FB GND
FB
GND
C28
220 pF
R11
5.6 kW 470 nF
R13
10 W
R14
22 W
OUT2M
OUT2P
LS2
C32
100 nF
C9
100 nF
C31
FB
GND
5.6 kW 470 nF
C29
100 nF
VDDA VSSA
13 19 24
VSSA VSSP
VDDA2
VSSA2
DIAG
n.c.
20
21
22
VSSP
VSSP2
OUT2
BOOT2
23
VDDP
VDDP2
VSSD
C34
100 nF
C35
FB GND FB GND
100 nF
VDDA VSSA
C12
100 nF
C13
VDDA1
VSSA1
100 nF
C37
15 nF
C27
L4
100 nF
C39
100 nF
C38
VDDP VSSP
17
VSSP1
14
VDDP1
6
MODE
10 12 7
OSC
100 nF
C14
100 nF
C16
100 nF
C15
47 mF
(63 V)
C8
C4
100 mF
(10 V)
C3
470 mF
(35 V)
C6
470 mF
(35 V)
C33
47 pF
18
STABI
C36
100 nF
VDDP
C40
220 pF
C10
220 pF
VSSP
C41
220 pF
R12
R2
10 W
R5
10 W
R7
10 W
R6
30 kW
R9
22 W
R4
5.6 kW
R1
5.6 kW
DZ1
5V6
S2
C2
47 mF
(35 V)
C5
47 mF
(35 V)
C1
100 nF
1
C7
100 nF
S1
OUT1P
OUT1M
LS1
LS1/LS2 L3/L4 C22/C31
2 W 10 mH 1 mF
4 W 22 mH 680 nF
6 W 33 mH 470 nF
8 W 47 mH 330 nF
C24
100 nF
C22
FB
GND
16
15
OUT1
BOOT1
15 nF
C21
L3
L1 BEAD
VDD
CON1
GND
VSS
+25 V
-25 V
L2 BEAD
VDDP
VSSA
ON/OFF OPERATE/MUTE
VDDP
VDDA
VDDP
VSSP
VSSA
VSSP
SINGLE-ENDED
OUTPUT FILTER VALUES
C11
220 pF
23
TDF8591TH
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 20 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
Fig 11. BTL application schematic
001aah233
IN1 C18 IN1P
IN1M
SGND1
FB GND
SGND2
8
9
11
2
5
4
3 1
C19
220 pF
C23
1 nF
C25
1 nF
R8
5.6 kW 1 mF
R3
5.6 kW
5.6 kW 1 mF
R10 C20
IN2P
IN2M
FB GND
FB
GND
C28
220 pF
R13
10 W
R14
22 W
C32
100 nF
C9
100 nF
C31
FB
GND
100 nF
VDDA VSSA
13 19 24
VSSA VSSP
VDDA2
VSSA2
DIAG
n.c.
20
21
22
VSSP
VSSP2
OUT2
BOOT2
23
VDDP
VDDP2
VSSD
C34
100 nF
C35
FB GND FB GND
100 nF
VDDA VSSA
C12
100 nF
C13
VDDA1
VSSA1
100 nF
C37
15 nF
C27
L4
100 nF
C39
100 nF
C38
VDDP VSSP
17
VSSP1
14
VDDP1
6
MODE
10 12 7
OSC
100 nF
C14
100 nF
C16
100 nF
C15
47 mF
(63 V)
C8
C4
100 mF
(10 V)
C3
470 mF
(35 V)
C6
470 mF
(35 V)
C33
47 pF
18
STABI
C36
100 nF
VDDP
C40
220 pF
C10
220 pF
VSSP
C41
220 pF
R2
10 W
R5
10 W
R7
10 W
R6
30 kW
R9
22 W
R4
5.6 kW
R1
5.6 kW
DZ1
5V6
S2
C2
47 mF
(35 V)
C5
47 mF
(35 V)
C1
100 nF
1
C7
100 nF
S1
J1
OUT1P
OUT2M
LS1
LOAD L C
4 W 10 mH 1 mF
8 W 22 mH 680 nF
C24
100 nF
C22
FB
GND
16
15
OUT1
BOOT1
15 nF
C21
L3
L1 BEAD
VDD
CON1
GND
VSS
+25 V
-25 V
L2 BEAD
VDDP
VSSA
ON/OFF OPERATE/MUTE
VDDP
VDDA
VDDP
VSSP
VSSA
VSSP BRIDGE-TIED LOAD
OUTPUT FILTER VALUES
C11
220 pF
23
TDF8591TH
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 21 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
12.8 Application graphs
VP = ±27 V; double coils; C = 680 nF.
(1) f = 10 kHz.
(2) f = 1 kHz.
(3) f = 100 Hz.
VP = ±27 V; double coils; C = 680 nF.
(1) f = 10 kHz.
(2) f = 1 kHz.
(3) f = 100 Hz.
a. RL = 4 W. b. RL = 2 W.
Fig 12. Total harmonic distortion as a function of output power, SE application
001aah197
10-1
10-2
10
1
102
THD
(%)
10-3
Po (W)
10-1 1 10 102 103
(1)
(2)
(3)
001aah196
10-1
10-2
10
1
102
THD
(%)
10-3
Po (W)
10-1 1 10 102 103
(1)
(2)
(3)
VP = ±27 V; double coils; C = 680 nF.
(1) f = 10 kHz.
(2) f = 1 kHz.
(3) f = 100 Hz.
VP = ±27 V; double coils; C = 680 nF.
(1) f = 10 kHz.
(2) f = 1 kHz.
(3) f = 100 Hz.
a. RL = 8 W b. RL = 4 W
Fig 13. Total harmonic distortion as a function of output power, BTL application
001aah199
10-1
10-2
10
1
102
THD
(%)
10-3
Po (W)
10-1 1 10 102 103
(1)
(2)
(3)
001aah198
10-1
10-2
10
1
102
THD
(%)
10-3
Po (W)
10-1 1 10 102 103
(1)
(2)
(3)
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 22 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
Po = 1 W; C = 680 nF; L = 22 mH.
(1) VP = ±14 V.
(2) VP = ±18 V.
(3) VP = ±27 V.
(4) VP = ±29 V.
Po = 1 W; C = 680 nF; L = 22 mH.
(1) VP = ±14 V.
(2) VP = ±18 V.
(3) VP = ±27 V.
(4) VP = ±29 V.
Fig 14. Total harmonic distortion as a function of
frequency, SE application with 2 W load
Fig 15. Total harmonic distortion as a function of
frequency, SE application with 4 W load
001aah200
10-1
10-2
1
THD
(%)
10-3
f (kHz)
10-2 10-1 1 10 102
(2)
(3)
(4)
(1)
001aah201
10-1
10-2
1
THD
(%)
10-3
(2)
(3)
(4)
(1)
f (kHz)
10-2 10-1 1 10 102
Po = 1 W; C = 680 nF; L = 22 mH.
(1) VP = ±14 V.
(2) VP = ±29 V.
(3) VP = ±18 V.
(4) VP = ±27 V.
Fig 16. Total harmonic distortion as a function of frequency, SE application with 8 W load
001aah202
10-1
10-2
1
THD
(%)
10-3
(2)
(3)
(4)
(1)
f (kHz)
10-2 10-1 1 10 102
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 23 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
Po = 1 W; C = 680 nF; L = 22 mH.
(1) VP = ±14 V.
(2) VP = ±18 V.
(3) VP = ±27 V.
(4) VP = ±29 V.
Po = 1 W; C = 680 nF; L = 22 mH.
(1) VP = ±14 V.
(2) VP = ±18 V.
(3) VP = ±27 V.
(4) VP = ±29 V.
Fig 17. Total harmonic distortion as a function of
frequency, BTL application with 2 W load
Fig 18. Total harmonic distortion as a function of
frequency, BTL application with 4 W load
001aah203
10-1
10-2
1
THD
(%)
10-3
(2)
(3)
(4)
(1)
f (kHz)
10-2 10-1 1 10 102
001aah204
10-1
10-2
1
THD
(%)
10-3
(2)
(3)
(4)
(1)
f (kHz)
10-2 10-1 1 10 102
Po = 1 W; C = 680 nF; L = 22 mH.
(1) VP = ±14 V.
(2) VP = ±18 V.
(3) VP = ±27 V.
(4) VP = ±29 V.
Fig 19. Total harmonic distortion as a function of frequency, BTL application with 8 W load
001aah205
10-1
10-2
1
THD
(%)
10-3
(2)
(3)
(4)
(1)
f (kHz)
10-2 10-1 1 10 102
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 24 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
RL = 4 W.
(1) VP = ±29 V.
(2) VP = ±27 V.
(3) VP = ±14 V.
RL = 4 W.
(1) VP = ±27 V.
(2) VP = ±29 V.
(3) VP = ±14 V.
a. Channel 2 to channel 1. b. Channel 1 to channel 2.
Fig 20. Channel separation as a function of frequency, SE application
001aah206
40
60
20
80
100
acs
(dB)
0
(2)
(3)
(1)
f (kHz)
10-2 10-1 1 10 102
001aah207
40
60
20
80
100
acs
(dB)
0
(1)
(2)
(3)
f (kHz)
10-2 10-1 1 10 102
(1) VP = ±29 V.
(2) VP = ±27 V.
(3) VP = ±14 V.
(1) VP = ±14 V.
(2) VP = ±29 V.
(3) VP = ±27 V.
a. Channel 1. b. Channel 2.
Fig 21. Common mode rejection ratio as a function of frequency, SE application
001aah208
60
100
CMRR
(dB)
20
(2)
(1)
f (kHz)
10-2 10-1 1 10 102
001aah209
60
100
CMRR
(dB)
20
(2)
(1)
(3)
f (kHz)
10-2 10-1 1 10 102
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 25 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
(1) VP = ±14 V.
(2) VP = ±27 V and ±29 V.
Fig 22. Common mode rejection ratio as a function of frequency; BTL application
001aah210
60
100
CMRR
(dB)
20
(2)
(1)
f (kHz)
10-2 10-1 1 10 102
(1) ripple in antiphase.
(2) ripple on VDD only.
(3) ripple on VSS only.
(4) ripple in phase.
(1) ripple on VSS only.
(2) ripple on VDD only.
(3) ripple in phase.
(4) ripple in antiphase.
a. SE application; RL = 4 W b. BTL application; RL = 8 W
Fig 23. Supply voltage ripple rejection as a function of frequency; Standby mode
001aah211
80
100
120
SVRR
(dB)
60
(2)
(4)
(1)
(3)
f (kHz)
10-2 10-1 1 10 102
001aah212
80
100
120
SVRR
(dB)
60
(2)
(4)
(1)
(3)
f (kHz)
10-2 10-1 1 10 102
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 26 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
(1) ripple on VDD only.
(2) ripple in antiphase.
(3) ripple on VSS only.
(4) ripple in phase.
(1) ripple on VSS only.
(2) ripple on VDD only.
(3) ripple in antiphase.
(4) ripple in phase.
a. SE application; RL = 4 W b. BTL application; RL = 8 W
Fig 24. Supply voltage ripple rejection as a function of frequency; Mute mode
001aah213
40
20
60
80
SVRR
(dB)
0
(2)
(4)
(1)
(3)
f (kHz)
10-2 10-1 1 10 102
(2)
(4)
(1)
(3)
001aah214
40
60
80
SVRR
(dB)
20
f (kHz)
10-2 10-1 1 10 102
(1) ripple on VDD only.
(2) ripple in antiphase.
(3) ripple on VSS only.
(4) ripple in phase.
(1) ripple in phase.
(2) ripple on VSS only.
(3) ripple on VDD only.
(4) ripple in antiphase.
a. SE application; RL = 4 W b. BTL application; RL = 8 W
Fig 25. Supply voltage ripple rejection as a function of frequency; Operating mode
001aah215
40
20
60
80
SVRR
(dB)
0
(2)
(4)
(1)
(3)
f (kHz)
10-2 10-1 1 10 102
001aah216
40
60
80
SVRR
(dB)
20
(1)
(2)
(3)
(4)
f (kHz)
10-2 10-1 1 10 102
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 27 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
(1) VP = ±14 V.
(2) VP = ±27 V.
(3) VP = ±29 V.
(1) VP = ±14 V.
(2) VP = ±27 V.
(3) VP = ±29 V.
a. Channel 1 b. Channel 2
Fig 26. Mute attenuation as a function of frequency, SE application
001aah217
40
60
20
80
100
amute
(dB)
0
(2)
(1)
(3)
f (kHz)
10-2 10-1 1 10 102
001aah218
40
60
20
80
100
amute
(dB)
0
(2)
(1)
(3)
f (kHz)
10-2 10-1 1 10 102
(1) VP = ±14 V.
(2) VP = ±27 V.
(3) VP = ±29 V.
Fig 27. Mute attenuation as a function of frequency, BTL application
001aah219
40
60
20
80
100
amute
(dB)
0
(1)
(2)
(3)
f (kHz)
10-2 10-1 1 10 102
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 28 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
f = 1 kHz; double coils; C = 680 nF.
(1) THD = 10 %.
(2) THD = 0.5 %.
f = 1 kHz; double coils; C = 680 nF.
(1) THD = 10 %.
(2) THD = 0.5 %.
a. RL = 2 W b. RL = 4 W
Fig 28. Output power as a function of supply voltage, SE application
VP (V)
25 35 45 55 65
001aah220
80
120
40
160
200
Po
(W)
0
(1)
(2)
VP (V)
20 30 40 50 60 70
001aah221
40
80
120
Po
(W)
0
(1)
(2)
f = 1 kHz; double coils; C = 680 nF.
(1) THD = 10 %.
(2) THD = 0.5 %.
f = 1 kHz; double coils; C = 680 nF.
(1) THD = 10 %.
(2) THD = 0.5 %.
a. RL = 4 W b. RL = 8 W
Fig 29. Output power as a function of supply voltage, BTL application
VP (V)
20 30 40 50 60 70
001aah222
200
100
300
400
Po
(W)
0
(1)
(2)
VP (V)
20 30 40 50 60 70
001aah223
100
180
260
Po
(W)
20
(1)
(2)
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 29 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
a. RL = 2 W; VP = ±28 V. b. RL = 4 W; VP = ±29 V
Fig 30. Efficiency as a function of output power (one channel), SE application
Po (W)
0 40 80 120 160 200
001aah224
40
60
20
80
100
h
(%)
0
001aah225
Po (W)
0 40 80 120
40
60
20
80
100
h
(%)
0
a. RL = 4 W; VP = ±18 V. b. RL = 4 W; VP = ±27 V
Fig 31. Efficiency as a function of output power, BTL application
001aah226
Po (W)
0 50 100 150
40
60
20
80
100
h
(%)
0
001aah227
Po (W)
0 50 100 150
40
60
20
80
100
h
(%)
0
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 30 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
13. Test information
13.1 Quality information
This product has been qualified in accordance with the Automotive Electronics Council
(AEC) standard Q100 - Stress test qualification for integrated circuits, and is suitable for
use in automotive applications.
a. RL = 2 W; VP = ±28 V. b. RL = 4 W; VP = ±29 V
Fig 32. Power dissipation as a function of output power (one channel), SE application
Po (W)
0 40 80 120 160 200
001aah228
20
10
30
40
P
(W)
0
Po (W)
0 20 40 60 80 100
001aah229
4
8
12
P
(W)
0
a. RL = 4 W; VP = ±18 V. b. RL = 4 W; VP = ±27 V
Fig 33. Power dissipation as a function of output power, BTL application
Po (W)
0 40 80 120 160
001aah230
8
4
12
16
P
(W)
0
Po (W)
0 40 80 120 160
001aah231
8
12
4
16
20
P
(W)
0
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 31 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
14. Package outline
Fig 34. Package outline SOT566-3 (HSOP24)
UNIT A4
(1)
OUTLINE REFERENCES
VERSION
EUROPEAN
PROJECTION ISSUE DATE
03-02-18
03-07-23
IEC JEDEC JEITA
mm +0.08
-0.04
3.5 0.35
DIMENSIONS (mm are the original dimensions)
Notes
1. Limits per individual lead.
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
SOT566-3
0 5 10 mm
scale
HSOP24: plastic, heatsink small outline package; 24 leads; low stand-off height SOT566-3
A
max.
detail X
A2
3.5
3.2
D2
1.1
0.9
HE
14.5
13.9
Lp
1.1
0.8
Q
1.7
1.5
2.7
2.2
v
0.25
w
0.25
y Z


q
0.07
x
0.03
D1
13.0
12.6
E1
6.2
5.8
E2
2.9
2.5
bp c
0.32
0.23
e
1
D(2)
16.0
15.8
E(2)
11.1
10.9
0.53
0.40
A3
A4
A2
(A3)
Lp
q
A
Q
D
y
x
HE
E
c
v M A
X
A
bp
Z w M
D1
D2
E2
E1
e
24 13
1 12
pin 1 index
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 32 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
15. Revision history
Table 11. Revision history
Document ID Release date Data sheet status Change notice Supersedes
TDF8591TH_1 20080305 Product data sheet - -
TDF8591TH_1 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 01 — 5 March 2008 33 of 34
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
16. Legal information
16.1 Data sheet status
[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term ‘short data sheet’ is explained in section “Definitions”.
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
16.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
16.3 Disclaimers
General — Information in this document is believed to be accurate and
reliable. However, NXP Semiconductors does not give any representations or
warranties, expressed or implied, as to the accuracy or completeness of such
information and shall have no liability for the consequences of use of such
information.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in medical, military, aircraft,
space or life support equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) may cause permanent
damage to the device. Limiting values are stress ratings only and operation of
the device at these or any other conditions above those given in the
Characteristics sections of this document is not implied. Exposure to limiting
values for extended periods may affect device reliability.
Terms and conditions of sale — NXP Semiconductors products are sold
subject to the general terms and conditions of commercial sale, as published
at http://www.nxp.com/profile/terms, including those pertaining to warranty,
intellectual property rights infringement and limitation of liability, unless
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of
any inconsistency or conflict between information in this document and such
terms and conditions, the latter will prevail.
No offer to sell or license — Nothing in this document may be interpreted
or construed as an offer to sell products that is open for acceptance or the
grant, conveyance or implication of any license under any copyrights, patents
or other industrial or intellectual property rights.
16.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
17. Contact information
For additional information, please visit: http://www.nxp.com
For sales office addresses, send an email to: salesaddresses@nxp.com
Document status[1][2] Product status[3] Definition
Objective [short] data sheet Development This document contains data from the objective specification for product development.
Preliminary [short] data sheet Qualification This document contains data from the preliminary specification.
Product [short] data sheet Production This document contains the product specification.
NXP Semiconductors TDF8591TH
2 ´ 100 W SE (4 W) or 1 ´ 310 W BTL (4 W) class-D amplifier
© NXP B.V. 2008. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 5 March 2008
Document identifier: TDF8591TH_1
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
18. Contents
1 General description . . . . . . . . . . . . . . . . . . . . . . 1
2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3 Ordering information . . . . . . . . . . . . . . . . . . . . . 1
4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2
5 Pinning information . . . . . . . . . . . . . . . . . . . . . . 2
5.1 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
5.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3
6 Functional description . . . . . . . . . . . . . . . . . . . 3
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
6.2 Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . 4
6.3 Pulse width modulation frequency . . . . . . . . . . 5
6.4 Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6.4.1 Thermal foldback . . . . . . . . . . . . . . . . . . . . . . . 6
6.4.2 Overtemperature protection . . . . . . . . . . . . . . . 6
6.4.3 Overcurrent protection . . . . . . . . . . . . . . . . . . . 6
6.4.4 Window protection . . . . . . . . . . . . . . . . . . . . . . 8
6.4.5 Supply voltage protections . . . . . . . . . . . . . . . . 8
6.5 Diagnostic output . . . . . . . . . . . . . . . . . . . . . . . 9
6.6 Differential inputs . . . . . . . . . . . . . . . . . . . . . . . 9
7 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 10
8 Thermal characteristics. . . . . . . . . . . . . . . . . . 11
9 Static characteristics. . . . . . . . . . . . . . . . . . . . 11
10 Dynamic characteristics . . . . . . . . . . . . . . . . . 13
10.1 Dynamic characteristics (SE) . . . . . . . . . . . . . 13
10.2 Dynamic characteristics (BTL) . . . . . . . . . . . . 14
11 Switching characteristics . . . . . . . . . . . . . . . . 15
12 Application information. . . . . . . . . . . . . . . . . . 15
12.1 BTL application . . . . . . . . . . . . . . . . . . . . . . . . 15
12.2 Output power estimation. . . . . . . . . . . . . . . . . 15
12.3 External clock . . . . . . . . . . . . . . . . . . . . . . . . . 16
12.4 Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
12.5 Heat sink requirements. . . . . . . . . . . . . . . . . . 17
12.6 Pumping effects . . . . . . . . . . . . . . . . . . . . . . . 17
12.7 Application schematics . . . . . . . . . . . . . . . . . . 18
12.8 Application graphs . . . . . . . . . . . . . . . . . . . . . 21
13 Test information . . . . . . . . . . . . . . . . . . . . . . . . 30
13.1 Quality information . . . . . . . . . . . . . . . . . . . . . 30
14 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 31
15 Revision history. . . . . . . . . . . . . . . . . . . . . . . . 32
16 Legal information. . . . . . . . . . . . . . . . . . . . . . . 33
16.1 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 33
16.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
16.3 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
16.4 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
17 Contact information. . . . . . . . . . . . . . . . . . . . . 33
18 Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

terça-feira, 11 de outubro de 2011

O Tribunal Superior do Trabalho (TST) determinou hoje (11) que os trabalhadores dos Correios voltem ao trabalho a partir da próxima quinta-feira.

O Tribunal Superior do Trabalho (TST) determinou hoje (11) que os trabalhadores dos Correios voltem ao trabalho a partir da próxima quinta-feira. Os ministros autorizaram a empresa a descontar no salário dos grevistas o equivalente a sete dias de greve e os demais 21 dias de paralisação devem ser compensados com trabalho extra nos fins de semana. Também foi determinado o pagamento de um aumento real de R$ 80 a partir de 1º de outubro e reajuste linear do salário e dos benefícios de 6,87% retroativo a 1º de agosto. Segundo o representante da empresa, o pagamento dos benefícios vai resultar em um impacto de cerca de R$ 850 milhões nas contas da empresa.

Para o secretário-geral da Federação Nacional dos Trabalhadores de Empresas de Correios, Telégrafos e Similares (Fentect), José Rivaldo da Silva, as condições determinadas pelos ministros refletem praticamente a mesma proposta que foi rejeitada pelas assembleias dos trabalhadores. “A gente tinha uma expectativa maior, mas quando se fala de uma decisão judicial, não posso dizer se valeu ou não a pena. O que ficou de recado para os trabalhadores é que é melhor negociar do que apostar no tribunal”, disse.

Neste momento, os diretores do Fentect estão reunidos analisando a determinação da Justiça do Trabalho. De acordo com Rivaldo da Silva, a tendência é acatar a decisão do tribunal. “A decisão da Justiça é pelo final da greve. A direção da Fentecc vai se reunir, mas decisão judicial não se contesta, tem que cumprir”.

O presidente do TST, ministro João Oreste Delazen, lembrou que a jurisprudência do tribunal determina sistematicamente o desconto dos dias de greve, mas esse foi um caso pontual porque houve a concordância da empresa na compensação com trabalho extra de parte dos dias parados. O ministro voltou a criticar a postura dos sindicatos, que, segundo ele, demonstrou uma politização do movimento grevista e um descompasso entre a cúpula e as bases das entidades sindicais. “Há um conflito evidente que demonstra a fraqueza, a fragilidade da organização sindical brasileira, que precisa ser passada a limpo com urgência”.

Dalazen alertou que, se os trabalhadores não voltarem ao trabalho na quinta-feira, estarão sujeitos à demissão por justa causa, por ato de indisciplina e descumprimento de decisão judicial, e as entidades deverão pagar multa de R$ 50 mil por dia, de acordo com a decisão do TST.

domingo, 25 de setembro de 2011

Metade dos trabalhadores que estavam parados já voltou às atividades

Quase metade dos trabalhadores dos Correios que haviam aderido à paralisação já retornou às atividades. No primeiro dia do movimento, o índice de adesão nacional era de 32% e caiu para 18% nesta sexta-feira (23) — 15 mil voltaram ao trabalho, enquanto 19 mil empregados continuam parados.
Além disso, os Correios estão contratando de forma imediata 6.074 novos empregados, sendo 5.060 carteiros e 1.014 operadores de triagem em transbordo, aprovados no concurso público realizado em maio.
Com 82% do efetivo total em atividade, os Correios trabalham para manter a entrega de correspondência em dia — 65% da carga segue no prazo. Neste final de semana, mais um mutirão nacional será realizado pelos empregados da empresa, com objetivo de manter esse índice.
Diálogo — Na noite de quinta-feira, a empresa reapresentou a proposta feita antes do início da paralisação e conclamou os trabalhadores a retornarem às atividades e retomarem o diálogo para fechamento do Acordo Coletivo de Trabalho 2011/2012. A proposta inclui reajuste de 6,87% sobre o salário e os benefícios, R$ 50 de aumento linear a partir de janeiro de 2012 — o que representa um aumento de 13% para 60% dos trabalhadores — e R$ 800 de abono.
Já a contraproposta protocolada pela representação sindical nos Correios nesta sexta-feira (23) está acima das possibilidades orçamentárias da empresa e inviabilizaria a sustentabilidade da ECT. A contraproposta tem impacto de R$ 4,3 bilhões na folha de pagamento — representa um acréscimo de 70% no custo anual da folha, equivale a cinco vezes o lucro da empresa em 2010 e a um terço da receita bruta dos Correios no ano passado. Os índices reivindicados elevariam a despesa com pessoal para 80% do orçamento da empresa.

Fonte: www.correios.com.br/noticias

segunda-feira, 12 de setembro de 2011

Nome da bola da Copa do Mundo no Brasil

É Gorduchinha a campanha para ser o nome da Bola da Copa 2014. Pimba na gorduchina, um frase inesquecível do locutor esportivo Osmar Santos que ficou na memória e na história dos jogos de futebol transmitidos pelo Osmar. Osmar sofreu um grave acidente de carro em 1994 e foi o fim de sua carreira, mas, até hoje ainda luta pela recuperação e com a voz comprometida, dedica-se pintura de quadros.
  • Osmar Aparecido dos Santos nasceu em Osvaldo Cruz, no dia 28 de julho de 1949
  • Profissão: Radialista, locutor esportivo e pintor brasileiro.
O idéia do nome de “Gorduchina” para ser o nome da bola da Copa do Mundo de 2014 no Brasil, é uma homenagem ao Osmar por ser um dos maiores locutores esportivos e pela frase Pimba na Gorduchinha durante as transmissões.
Várias redes sociais aderiram a campanha e visam recolher 1 milhão de assinaturas para que o nome Gorduchinha seja aceito para rolar nos gramados do Brasil em 2014.

Acompanhe a companha no Facebook: https://www.facebook.com/OsmarSantos2014


O nome da bola da Copa do Mundo da África do Sul foi a famosa Jabulani que fazia curvas no ar levando desespero aos goleiros.